(bridge) Send note to
Paul Prueitt .
(SBF1.
.)
We ask that
comments and discussion on this series be made in the Yahoo
groups from, eventChemistry.
SBF1 –
Introduction to the Sowa-Ballard Framework
SBF2 –
Ontological Primitives, derived by Sowa and Ballard
SBF3 – Data
regularity within the Ontological Primitives
The Sowa -Ballard Framework 4
Mapping
Viewpoints and Differences Between Viewpoints
The use of these frameworks
allows one to map
vulnerabilities/threats
structure/function
substance/form
demand/supply
using multiple separate
analysis of events - seen from different viewpoints. A cross level analysis of
the relationship between substance and form, from phonology co-occurrence in
audio recordings, can also be established as a means to predict function from
sub-structure.
We have conjectured (August
14, 2002) that the function of a phone call might be thus reduced to a set of semantic
primitives that are language independent. The cross
level analysis is consistent with Prueitt’s theory of stratified complexity,
but as yet has not been tested. Testing
this conjecture would be straight forward provided the availability of properly
annotated voice communications in the various contexts of interest.
cA/eC is used to visualize the
categories of data regularity and to develop the co-occurrence maps for
generalized latent semantic indexing.
Human annotation is then possible using the existing OSI
browsers.
So, for example someone can use
the Zachman Framework at DARPA or NSF as this person examines the descriptions
of active R&D programs.
A different person who is in
industry would review the same documents and obtain a different set of
descriptive elements - reflecting the company’s capabilities and wishes.
More interesting, perhaps, is the
comparison of the viewpoint of the program manager and the industry
person. One is interested in an overall
picture of R&D from the institutional viewpoint, whereas the other is
interested in new business development.
The technique would appear to be a process for mapping the
market potential for company capabilities.
The Sowa-Ballard Framework
{ independent, relative,
mediating }
{ physical, abstract }
{ occurrent, continuant,
universal }
is considered to be more general than the Zachman
Framework. At issue for General
Framework Theory (Prueitt, 2002) are such things as formal or semi-formal
translation of content from one framework “form” to another framework
“form”. The naming of the enumerations
provides part of the definition of a framework form, as does the dimensions of
the framework matrix. Such Schank type scripts (with slots and fillers) has
been part of the AI literature, and because data entry forms are frameworks
(but not often recognized as frameworks), we have the basis for examining data
regularity within context where the data is acquired from humans via a
framework. In most cases the
‘frameworks” are not well enumerated and reflect underlying problems with data
modeling using Codd normal form relational databases. Some, such as the CoreTalk group, see this confusion over data
models diminishing as the frameworks are learned through experience.
The frameworks do not lead to the same type of database
system that is the standard “relational data base”. The OSI Knowledge Operation System is simpler, fully interoperable
(non-proprietary from the beginning), and is grounded in a stratified
complexity paradigm based on cognitive neuroscience and the physics of
regularity as expressed at various levels of organization, including
electro-magnetic spectrum and in human
organization of personal knowledge.
The Sowa-Ballard Framework addresses such a high level of
abstraction that any sequence of events can be annotated by providing
descriptions for the elemental primitives.
However, one has to “bend one’s mind” a bit to get to the philosophical
and metaphysics import. Thus for
software development in a domain, such as the analysis of threat events, one
needs the concreteness of the Zachman Framework or sometime like the Zachman.
Another issue is about how might one derive the Zachman
form from the Sowa-Ballard form? Is
this even possible? Both of these forms
have a claim to universality. In either
case the justification is a matter of some interest.
Clearly the Sowa-Ballard Framework finds justification in
historical trends from logic and philosophy, and ultimately a theoretical
construct that Ballard has worked out (but not fully published, as yet). Ballard has been historically involved in
intelligent tutoring systems, and the modification of the earlier Sowa
Framework reflects that need to increase the set of primitives from 12 (Sowa)
to 18 (Sowa-Ballard) via the introduction of the descriptor “universal” to the
Sowa enumeration { occurrent, continuant }.
This increase added what is needed to bring the self-image of a person
learning into the framework. Universality
is contrasted with the (local and situated) occurrence of something or the
continuation of something. In this way,
Ballard has introduced a stratification principle into the 12 – primitive Sowa Framework.
The Ballard Framework is then more paradigmatically consistent, than the Sowa
Framework with the tri-level architecture for machine intelligence developed by
Prueitt.
Just as clearly, the Zachman Framework is based on the
regularity of the enumeration of six interrogatives. This is an empirical justification having some weight. The five roles, in the Zachman, does also
seem to have a universality that is observed when one starts to become
comfortable in using the Zachman.
To be complete on this issue of what are the fundamental Frameworks,
one has to note the work of Pospelov that suggests that there is a periodic table
related to the semantic primitives as expressed in languages.
The I-Ching is also a Framework whose use in “knowledge
management” goes back at least 3000 years.
The Zachman Framework takes a specific orientation towards
complex processes that are produced by the combined effects of the five roles {
planner, owner, designer, builder, subcontractor } with six
interrogatives. The interrogatives are
classical and have seen wide use in analytic methodology. If we are to consider
the intrusion detection domain we might select a different enumeration of roles,
but keep the same interrogatives as the Zachman
{ what, how, where, who, when, why }.
Some thought needs to be applied here, but perhaps the five
roles for intrusion detection are
{ social entity,
controller, architect, agency, proxy }
Of course this incident role description is the “same” as
the Zachman, except we have used terms that perhaps fit the language used by
computer emergence response teams. But
the meaning is focused and quite different.
Why/proxy is different form why/subcontractor, because proxy and
subcontractor have similarities but also differences in contextual
meaning.
In developing a trending analysis of cyber events a
community can use the Incident Framework.
This methodology is quite simple and the cost of placing an Incident
Framework into deployment status is really not the issue. The issue is in communicating to the Power
That Be (PTB) the ease and value of the methodology.
The interface between the Incident Framework and the visual
rendering of categorical Abstraction (cA) will be demonstrated sometime, for
the first time, in September 2002.
A similar framework can be established for trending events
related to the examination of satellite imagery and intelligence
communications. Again, the issue is in
communicating to the PTB.
In either case, there is structural regularity in the:
1)
Textual expressions that are
used within each of the 30 primitives.
2) Co-occurrence of expression type between primitives in the case event.
This regularity promises a non-statistical predictive analysis methodology that is easy to understand by analysts working on event trending.
The approach being suggested is in fact stratified as the decomposition of events into substructure is done in such a fashion as to allow similarity analysis and human annotation to develop low cost, agile event knowledge bases.
(bridge) Comments
can be sent to ontologyStream e-forum . (SBF1. .)